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Abstract—The stereoselective synthesis of 4 0-deoxy aza-disaccharides in a concise and practical approach is described from C-linked
carbo-b-amino acid esters and this protocol utilizes an intramolecular amide bond formation and cis-dihydroxylation for the con-
struction of the new sugar ring.
� 2004 Elsevier Ltd. All rights reserved.
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In recent years, the chemistry of aza-saccharides has
attracted much attention, since they are powerful inhibi-
tors of glycosidases or glycosyl transferases, thus having
enormously interesting potential applications for the
treatment of diabetes,1 cancer,2 and viral infections.3

The �iminosugars� (aza-sugars) are monosaccharide ana-
logs having a nitrogen atom instead of the oxygen atom
in the furan/pyran ring. Johnson et al.4 first reported
the synthesis of an aza-disaccharide by applying the
Suzuki reaction. Recently Dhavale et al.5 reported aza-
sugars from monosaccharides, while Le Merrer et al.6

reported aza-disaccharides from C2-symmetrical bis-
epoxides derived from DD-mannitol. In continuation of
our efforts7 on the synthesis of new glyco-substances
from monosaccharides, herein, we report a new and effi-
cient approach for the stereoselective synthesis of C(4)–
C(5 0)/C(5)–C(5 0)-linked 4 0-deoxy aza-DD-disaccharides 1
and 2 from from C-linked carbo-b-amino acid esters
(Caa).

From the retrosynthetic analysis of 1 and 2 (Scheme 1),
it was envisaged that cyclic amides 3 and 4 would be the
late stage intermediates which could in turn be made
from the corresponding C-linked carbo-b-amino acid
esters 5 and 6, respectively.
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Accordingly, for the synthesis of furano-pyranose C(4)–
C(5 0)-linked 4 0-deoxy aza-DD-disaccharide 1, the known
ester 58 was subjected to hydrogenolysis (Scheme 2) with
10% Pd–C in methanol under hydrogen to give free
amine 7 (96%), which on reduction with LiAlH4 in
THF gave 8 (96%). Treatment of 8 with (Boc)2O and
Et3N in THF gave 9 (60%), which on oxidation with
IBX in DMSO gave aldehyde 10 (93%). Wittig olefin-
ation of aldehyde 10 in methanol at 0 �C gave a,b-
unsaturated ester 11 (cis/trans, 1.5:1) in 83% yield. From
esters 11 on Boc deprotection with trifluoroacetic acid in
CH2Cl2 followed by further treatment with DMAP in
toluene, only the cis isomer was converted into the cyclic
amide 3, while the trans isomer remained as amino ester
11a. The crude reaction mixture was treated with Boc2O
and purified to give 3 (51%) and 11b. Finally, hydroxyl-
ation of amide 3 with OsO4 and NMO in acetone:H2O
(4:1) furnished C(4)–C(5 0)-linked 4 0-deoxy aza-disaccha-
ride 1 in 54% yield as the exclusive product, whose
structure was unambiguously assigned from NMR
spectroscopic studies.9

A twist conformation of the six-membered ring
(Fig. 1) was confirmed by the 3JH40a–H5 0 = 11.4Hz,
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Scheme 2.

Figure 1. Characteristic NOEs and minimum energy structures for 1. The numbering shown in the NOE diagram was used for the NMR data.
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3JH4 0e–H5 0 = 1.9Hz,
3JH30–H4 0e = 4.7Hz,

3JH3 0–H40a =
1.9Hz, 3JH2 0a–H3 0 = 3.1Hz coupling and long-range x-
coupling 4JNH–H4 0e = 1.9Hz. This was further supported
by the NOE between H2 0–H4 0a. The 3JH1–H2 = 3.8Hz,
3JH2–H3 = 0Hz, and 3JH3–H4 = 3.6Hz couplings present
in the sugar ring correspond to a sugar pucker of 3T2,
in agreement with earlier observations.7 NOEs between
H1–Me(pro-S), H2–Me(pro-S) and H4–Me(pro-R)
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further support the proposed structure for the furanose
ring. The 3JH4–H5 0 = 5.5Hz coupling and NOEs
between NH–H3, NH–OCH3, NH–H4, H3–H5

0, H5 0–
OMe, H4–H4 0a and H3–H4 0e suggests averaging of
NMR parameters due to the presence of several orienta-
tions about C(4)–C(5 0). Further, the structure was con-
firmed by energy minimization calculations (Fig. 1)
obtained from the MOPAC programme (Insight II
(97.0)/Discover programme).10

In continuation of our study on the synthesis of furano-
pyranose C(4)–C(5 0)-linked 4 0-deoxy aza-disaccharide 1,
the synthesis of pyranose–pyranose C(5)–C(5 0)-linked
aza-disaccharide 2 was initiated from C-linked carbo-
b-amino acid 6.8 Accordingly, ester 6 (Scheme 3) on
hydrogenolysis (Pd–C) and subsequent reduction
Figure 2. Characteristic NOEs and the minimum energy structures for 2. Th
(LiAlH4, THF) of 12 followed by protection of the
amine 13 with (Boc)2O furnished 14 (70%). Oxidation
of 14 with IBX and subsequent Wittig olefination of
15 gave 16 (79%) as a mixture of cis/trans (1.5:1) iso-
mers. Deprotection of 16 with trifluoroacetic acid fol-
lowed by cyclization with DMAP in toluene and
subsequent Boc protection of the crude mixture fur-
nished cyclic amide 4 (56%), while uncyclised 16a was
converted only into 16b. Amide 4 on cis-dihydroxylation
(OsO4, NMO in acetone:H2O 4:1) gave C(5)–C(5 0)-
linked 4 0-deoxy aza-disaccharide 2 (60%), whose struc-
ture was extensively characterized by NMR and other
spectral studies.9

The dihydroxy containing six-membered ring of 2
adopts a twisted structure similar to that shown by 1
e numbering shown in the NOE diagram was used for the NMR data.



8810 G. V. M. Sharma et al. / Tetrahedron Letters 45 (2004) 8807–8810
(Fig. 1). The couplings 3JH4 0a–H5 0 = 11.2Hz,
3JH4 0e–

H5 0 = 1.7Hz,
3JH30–H4 0e = 4.7Hz,

3JH30–H4 0a = 1.7Hz,
and 3JH20–H3 0 = 3.0Hz and long range x-coupling
4JNH–H4 0e = 1.7Hz, as well as NOE the H2 0–H4 0a
NOE confirm this fact. The galactose ring exists in a
slightly distorted boat form supported by the 3JH1–H2 =
5.0Hz, 3JH2–H3 = 2.5Hz,

3JH3–H4 = 7.8Hz and 3JH4–
H5 = 1.7Hz couplings in addition to the H3–H5 NOE.
The structure was further supported by H5–Me(pro-R)
NOE. The 3JH5–H50 = 5.8Hz coupling and NOEs
between NH–H4, NH–H5, H4–H5 0, H4 0a–H5, H4 0e–
H5, H4–H4 0a, and H4–H4 0e suggest averaging of
NMR parameters due to the presence of several orienta-
tions about the C(5)–C(5 0) junction. The structure was
further confirmed from the energy minimization calcula-
tions (Fig. 2) obtained from the MOPAC programme
(Insight II (97.0)/Discover programme).10

In conclusion, a concise and efficient approach for the
stereoselective synthesis of furano-pyranose C(4)-C(5 0)-
linked 4 0-deoxy aza-disaccharide 1 and pyrano-pyranose
C(5)–C(5 0)-linked 4 0-deoxy aza-disaccharide 2 from the
corresponding C-linked carbo-b-amino acid monomers
has been demonstrated. Making use of the cis-double
bond in cyclic amides, a 4-deoxy-DD-gulo aza-saccharide
moiety has been very effectively installed at the C-4
and C-5 positions of Caas 5 and 6, respectively.
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